Source code for ADFWI.dip.dip_acoustic_model

from ADFWI.model import AbstractModel
from ADFWI.utils import numpy2tensor
from ADFWI.view import plot_vp_rho,plot_model
from typing import Optional,Tuple,Union
import torch
from torch import Tensor
import numpy as np
from torchinfo import summary

[docs]class DIP_AcousticModel(AbstractModel): """ Acoustic Velocity model with deep parameterization of vp or rho. Parameters ---------- ox : float Not used. The origin coordinates of the model in the x-direction (meters). oz : float Not used. The origin coordinates of the model in the z-direction (meters). nx : int The number of grid points in the x-direction. nz : int The number of grid points in the z-direction. dx : float The grid spacing in the x-direction (meters). dz : float The grid spacing in the z-direction (meters). DIP_model_vp : Optional[torch.nn.Module] Reparameterized vp using a deep neural network, by default None. DIP_model_rho : Optional[torch.nn.Module] Reparameterized rho using a deep neural network, by default None. reparameterization_strategy : str Reparameterization strategy ('vel' for generating velocity model, 'vel_diff' for generating velocity variation). vp_init : Optional[torch.Tensor] The initial vp model (must be provided when using the 'vel_diff' strategy). rho_init : Optional[torch.Tensor] The initial rho model (must be provided when using the 'vel_diff' strategy). vp_bound : Optional[Tuple[float, float]], default=None The lower and upper bounds for the P-wave velocity model. rho_bound : Optional[Tuple[float, float]], default=None The lower and upper bounds for the density model. auto_update_rho : Optional[bool], default=True Whether to automatically update the density model during inversion. auto_update_vp : Optional[bool], default=False Whether to automatically update the P-wave velocity model during inversion. water_layer_mask : Optional[Union[np.array, Tensor]], default=None A mask for the water layer (not updated), if applicable. free_surface : Optional[bool], default=False Indicates whether a free surface is present in the model. abc_type : Optional[str], default='PML' The type of absorbing boundary condition used in the model. Options: 'PML' or 'Jerjan'. abc_jerjan_alpha : Optional[float], default=0.0053 The attenuation factor for the Jerjan boundary condition. nabc : Optional[int], default=20 The number of grid cells dedicated to the absorbing boundary. device : str, default='cpu' The device on which to run the model ('cpu' or 'cuda'). dtype : torch.dtype, default=torch.float32 The data type for PyTorch tensors. """ def __init__(self, ox:float,oz:float, nx:int ,nz:int, dx:float,dz:float, DIP_model_vp = None, # deep image prior models DIP_model_rho = None, reparameterization_strategy = "vel", # vel/vel_diff vp_init:Optional[Union[np.array,Tensor]] = None, # initial model parameter rho_init:Optional[Union[np.array,Tensor]] = None, vp_bound : Optional[Tuple[float, float]] = None, # model parameter's boundary rho_bound : Optional[Tuple[float, float]] = None, water_layer_mask:Optional[Union[np.array,Tensor]]= None, auto_update_rho:Optional[bool] = True, auto_update_vp :Optional[bool] = False, free_surface: Optional[bool] = False, abc_type : Optional[str] = 'PML', abc_jerjan_alpha:Optional[float] = 0.0053, nabc:Optional[int] = 20, device = 'cpu', dtype = torch.float32 ): # initialize the common model parameters super().__init__(ox,oz,nx,nz,dx,dz,free_surface,abc_type,abc_jerjan_alpha,nabc,device,dtype) self.reparameterization_strategy = reparameterization_strategy # update rho/vp using the empirical function self.auto_update_rho = auto_update_rho self.auto_update_vp = auto_update_vp # gradient mask if water_layer_mask is not None: self.water_layer_mask = numpy2tensor(water_layer_mask,dtype=torch.bool).to(device) else: self.water_layer_mask = None # Neural networks self.DIP_model_vp = DIP_model_vp self.DIP_model_rho = DIP_model_rho # initialize the model parameters self.pars = ["vp","rho"] self.vp_init = torch.zeros((nz,nx),dtype=dtype).to(device) if vp_init is None else numpy2tensor(vp_init,dtype=dtype).to(device) self.rho_init = torch.zeros((nz,nx),dtype=dtype).to(device) if rho_init is None else numpy2tensor(rho_init,dtype=dtype).to(device) self.vp = self.vp_init.clone() self.rho = self.rho_init.clone() self._parameterization() # set model bounds self.lower_bound["vp"] = vp_bound[0] if vp_bound is not None else None self.lower_bound["rho"] = rho_bound[0] if rho_bound is not None else None self.upper_bound["vp"] = vp_bound[1] if vp_bound is not None else None self.upper_bound["rho"] = rho_bound[1] if rho_bound is not None else None # check the input model self._check_bounds() self.check_dims()
[docs] def get_requires_grad(self, par: str): if par not in self.pars: raise ValueError("Parameter {} not in model".format(par)) if par == "vp": return self.DIP_model_vp is not None if par == "rho": return self.DIP_model_rho is not None
[docs] def get_model(self, par: str): if par not in ["vp","rho"]: raise "Error input parametrs" elif par == "vp": vp = self.vp.cpu().detach().numpy() return vp elif par == "rho": rho = self.rho.cpu().detach().numpy() return rho
[docs] def get_bound(self, par: str): if par not in ["vp","rho"]: raise "Error input parameters" else: m_min = self.lower_bound[par] m_max = self.upper_bound[par] return [m_min,m_max]
def __repr__(self): info = f" Model with parameters {self.pars}:\n" info += f" Model orig: ox = {self.ox:6.2f}, oz = {self.oz:6.2f} m\n" info += f" Model grid: dx = {self.dx:6.2f}, dz = {self.dz:6.2f} m\n" info += f" Model dims: nx = {self.nx:6d}, nz = {self.nz:6d}\n" info += f" Model size: {self.nx * self.nz * len(self.pars)}\n" info += f" Free surface: {self.free_surface}\n" info += f" Absorbing layers: {self.nabc}\n" info += f" NN structure\n" if self.DIP_model_vp is not None: info += str(summary(self.DIP_model_vp,device=self.device)) if self.DIP_model_rho is not None: info += str(summary(self.DIP_model_rho,device=self.device)) return info
[docs] def set_rho_using_empirical_function(self): """approximate rho via empirical relations with vp """ vp = self.vp.cpu().detach().numpy() rho = self.rho.cpu().detach().numpy() rho_emprical= np.power(vp, 0.25) * 310 if self.water_layer_mask is not None: grad_mask = self.water_layer_mask.cpu().detach().numpy() rho_emprical[grad_mask] = rho[grad_mask] self.rho = numpy2tensor(rho_emprical,self.dtype).to(self.device) return
[docs] def set_vp_using_empirical_function(self): """approximate vp via empirical relations with rho """ rho = self.rho.cpu().detach().numpy() vp = self.vp.cpu().detach().numpy() vp_empirical= np.power(rho / 310, 4) if self.water_layer_mask is not None: grad_mask = self.water_layer_mask.cpu().detach().numpy() vp_empirical[grad_mask] = vp[grad_mask] self.vp = numpy2tensor(vp_empirical,self.dtype).to(self.device) return
def _parameterization(self,*args,**kw_args): """setting variable and gradients """ if self.DIP_model_vp is not None: if self.reparameterization_strategy == "vel": self.vp = self.DIP_model_vp(*args,**kw_args) elif self.reparameterization_strategy == "vel_diff": self.vp = self.vp_init + self.DIP_model_vp(*args,**kw_args) elif self.auto_update_vp: self.set_vp_using_empirical_function() if self.DIP_model_rho is not None: if self.reparameterization_strategy == "vel": self.rho = self.DIP_model_rho(*args,**kw_args) elif self.reparameterization_strategy == "vel_diff": self.rho = self.rho_init + self.DIP_model_rho(*args,**kw_args) elif self.auto_update_rho: self.set_rho_using_empirical_function() return def _plot_vp_rho(self,**kwargs): """plot velocity model """ plot_vp_rho(self.vp,self.rho, dx=self.dx,dz=self.dz,**kwargs) return def _plot(self,var,**kwargs): """plot single velocity model """ model_data = self.get_model(var) plot_model(model_data,title=var,**kwargs) return
[docs] def clip_params(self,par): """Clip the model parameters to the given bounds """ if self.get_requires_grad(par): if self.lower_bound[par] is not None and self.upper_bound[par] is not None: # Retrieve the model parameter m = getattr(self, par) min_value = self.lower_bound[par] max_value = self.upper_bound[par] # Create a temporary copy for masking purposes m_temp = m.clone() # Use .clone() instead of .copy() to avoid issues with gradients # Clip the values of the parameter using in-place modification with .data m.data.clamp_(min_value, max_value) # Apply the water layer mask if it is not None, using in-place modification if self.water_layer_mask is not None: m.data = torch.where(self.water_layer_mask.contiguous(), m_temp.data, m.data) return
[docs] def forward(self,*args,**kwargs): """Forward method of the elastic model class """ self._parameterization() self.clip_params("vp") self.clip_params("rho") return