Source code for ADFWI.model.elastic_model

import numpy as np
import torch
from torch import Tensor
from typing import Optional,Tuple,Union,List
from ADFWI.utils import gpu2cpu,numpy2tensor,tensor2numpy
from ADFWI.model.base import AbstractModel
from ADFWI.model.parameters import (thomsen_init,elastic_moduli_init,
                         vs_vp_to_Lame,thomsen_to_elastic_moduli,
                         elastic_moduli_for_isotropic,elastic_moduli_for_TI,
                         parameter_staggered_grid)
from ADFWI.view import (plot_vp_rho,plot_vp_vs_rho,plot_eps_delta_gamma,plot_lam_mu,plot_model)
from ADFWI.survey import Survey

[docs]class IsotropicElasticModel(AbstractModel): """Isotropic Elastic Velocity model with parameterization of vp, vs, and rho. Parameters ---------- ox : float Origin of the model in x-direction (m) oz : float Origin of the model in z-direction (m) nx : int Number of grid points in x-direction nz : int Number of grid points in z-direction dx : float Grid size in x-direction (m) dz : float Grid size in z-direction (m) vp : Optional[Union[np.array, Tensor]], optional P-wave velocity model with shape (nz, nx), default is None vs : Optional[Union[np.array, Tensor]], optional S-wave velocity model with shape (nz, nx), default is None rho : Optional[Union[np.array, Tensor]], optional Density model with shape (nz, nx), default is None vp_bound : Optional[Tuple[float, float]], optional The lower and upper bounds for the P-wave velocity model, default is None vs_bound : Optional[Tuple[float, float]], optional The lower and upper bounds for the S-wave velocity model, default is None rho_bound : Optional[Tuple[float, float]], optional The lower and upper bounds for the density model, default is None vp_grad : Optional[bool], optional A flag to indicate if the gradient of the P-wave velocity model is needed, default is False vs_grad : Optional[bool], optional A flag to indicate if the gradient of the S-wave velocity model is needed, default is False rho_grad : Optional[bool], optional A flag to indicate if the gradient of the density model is needed, default is False free_surface : Optional[bool], optional A flag to indicate the presence of a free surface in the model, default is False abc_type : Optional[str], optional The type of absorbing boundary condition used in the model, options include 'PML', 'Jerjan', etc., default is 'PML' abc_jerjan_alpha : Optional[float], optional The attenuation factor for the Jerjan boundary condition, default is 0.0053 nabc : Optional[int], optional The number of grid cells dedicated to the absorbing boundary, default is 20 auto_update_rho : Optional[bool], optional Whether to automatically update the density model during inversion, default is True auto_update_vp : Optional[bool], optional Whether to automatically update the P-wave velocity model during inversion, default is False water_layer_mask : Optional[Union[np.array, Tensor]], optional A mask for the water layer (not updated), if applicable, default is None device : str, optional The device on which to run the model, options are 'cpu' or 'cuda', default is 'cpu' dtype : torch.dtype, optional The data type for PyTorch tensors, default is torch.float32 """ def __init__(self, ox:float,oz:float, nx:int,nz:int, dx:float,dz:float, vp:Optional[Union[np.array,Tensor]] = None, # model parameter vs:Optional[Union[np.array,Tensor]] = None, rho:Optional[Union[np.array,Tensor]] = None, vp_bound: Optional[Tuple[float, float]] = None, # model parameter's boundary vs_bound: Optional[Tuple[float, float]] = None, rho_bound: Optional[Tuple[float, float]] = None, vp_grad:Optional[bool] = False, # requires gradient or not vs_grad:Optional[bool] = False, rho_grad:Optional[bool] = False, free_surface:Optional[bool] = False, abc_type:Optional[str] = 'PML', abc_jerjan_alpha:Optional[float] = 0.0053, nabc:Optional[int] = 20, auto_update_rho:Optional[bool] = True, auto_update_vp:Optional[bool] = False, water_layer_mask:Optional[Union[np.array,Tensor]]= None, device = 'cpu', dtype = torch.float32 )->None: # initialize the common model parameters super().__init__(ox,oz,nx,nz,dx,dz,free_surface,abc_type,abc_jerjan_alpha,nabc,device,dtype) # initialize the thomson model model parameters self.pars = ["vp","vs","rho"] self.vp = vp.copy() self.vs = vs.copy() self.rho = rho.copy() self.vp_grad = vp_grad self.vs_grad = vs_grad self.rho_grad = rho_grad self.eps = np.zeros((nz,nx)) self.gamma = np.zeros((nz,nx)) self.delta = np.zeros((nz,nx)) self._parameterization_thomson() # initialize the lame constant self.mu = None self.lamu = None self.lam = None self.muxz = None self.b = None self.bx = None self.bz = None self._parameterization_Lame() # initialize the elastic moduli self.CC = [] self._parameterization_elastic_moduli() # set model bounds self.lower_bound["vp"] = vp_bound[0] if vp_bound is not None else None self.lower_bound["vs"] = vs_bound[0] if vs_bound is not None else None self.lower_bound["rho"] = rho_bound[0] if rho_bound is not None else None self.upper_bound["vp"] = vp_bound[1] if vp_bound is not None else None self.upper_bound["vs"] = vs_bound[1] if vs_bound is not None else None self.upper_bound["rho"] = rho_bound[1] if rho_bound is not None else None # set model gradients self.requires_grad["vp"] = self.vp_grad self.requires_grad["vs"] = self.vs_grad self.requires_grad["rho"] = self.rho_grad # check the input model self._check_bounds() self.check_dims() # update rho using the empirical function self.auto_update_rho = auto_update_rho self.auto_update_vp = auto_update_vp if water_layer_mask is not None: self.water_layer_mask = numpy2tensor(water_layer_mask,dtype=torch.bool).to(device) else: self.water_layer_mask = None def _parameterization_thomson(self): """setting variable and gradients """ # numpy2tensor self.vp = numpy2tensor(self.vp ,self.dtype).to(self.device) self.vs = numpy2tensor(self.vs ,self.dtype).to(self.device) self.rho = numpy2tensor(self.rho ,self.dtype).to(self.device) self.eps = numpy2tensor(self.eps ,self.dtype).to(self.device) self.gamma = numpy2tensor(self.gamma,self.dtype).to(self.device) self.delta = numpy2tensor(self.delta,self.dtype).to(self.device) # set model parameters self.vp = torch.nn.Parameter(self.vp ,requires_grad=self.vp_grad) self.vs = torch.nn.Parameter(self.vs ,requires_grad=self.vs_grad) self.rho = torch.nn.Parameter(self.rho ,requires_grad=self.rho_grad) self.eps = torch.nn.Parameter(self.eps ,requires_grad=False) self.gamma = torch.nn.Parameter(self.gamma ,requires_grad=False) self.delta = torch.nn.Parameter(self.delta ,requires_grad=False) return def _parameterization_Lame(self): """Calculate the lame parameters """ mu,lamu,lam,b = vs_vp_to_Lame(self.vp,self.vs,self.rho) self.mu = mu self.lamu = lamu self.lam = lam self.b = b return def _parameterization_elastic_moduli(self): """calculate the 21 dependent elastic moduli """ # initialize elastic moduli CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] = elastic_moduli_init(self.nz,self.nx,self.device,self.dtype) # transform thomsen parameter to elastic moduli C11,C13,C33,C44,C66 = thomsen_to_elastic_moduli(self.vp,self.vs,self.rho,self.eps,self.delta,self.gamma) CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] # define elastic moduli for isotropic model CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] = elastic_moduli_for_isotropic(CC) # prepare staggered grid settings bx,bz,muxz,C44,C55,C66 = parameter_staggered_grid(self.mu,self.b,C44,C55,C66,self.nx,self.nz) self.bx = bx self.bz = bz self.muxz = muxz CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] self.CC = CC return
[docs] def get_clone_data(self) -> Tuple: kwargs = super().get_clone_data() return kwargs
def _plot_vp_vs_rho(self,**kwargs): """plot velocity model """ plot_vp_vs_rho(self.vp,self.vs,self.rho, dx=self.dx,dz=self.dz,**kwargs) return def _plot_eps_delta_gamma(self,**kwargs): """plot anisotropic parameters """ plot_eps_delta_gamma(self.eps,self.delta,self.gamma, dx=self.dx,dz=self.dz,**kwargs) return def _plot_lam_mu(self,**kwargs): """plot lame parameters """ plot_lam_mu(self.lam,self.mu, dx=self.dx,dz=self.dz,**kwargs) return def _plot(self,var,**kwargs): """plot single velocity model """ model_data = self.get_model(var) plot_model(model_data,title=var,**kwargs) return
[docs] def set_rho_using_empirical_function(self): """approximate rho via empirical relations with vp """ rho = self.rho.cpu().detach().numpy() vp = self.vp.cpu().detach().numpy() rho_empirical = np.power(vp, 0.25) * 310 if self.water_layer_mask is not None: mask = self.water_layer_mask.cpu().detach().numpy() rho_empirical[mask] = rho[mask] rho = numpy2tensor(rho_empirical,self.dtype).to(self.device) self.rho = torch.nn.Parameter(rho ,requires_grad=self.rho_grad) return
[docs] def set_vp_using_empirical_function(self): """approximate vp via empirical relations with vs """ vp = self.vp.cpu().detach().numpy() vs = self.vs.cpu().detach().numpy() vp_empirical = vs*np.sqrt(3) if self.water_layer_mask is not None: mask = self.water_layer_mask.cpu().detach().numpy() vp_empirical[mask] = vp[mask] vp = numpy2tensor(vp_empirical,self.dtype).to(self.device) self.vp = torch.nn.Parameter(vp,requires_grad=self.vp_grad) return
[docs] def clip_params(self)->None: """Clip the model parameters to the given bounds """ for par in self.pars: if self.lower_bound[par] is not None and self.upper_bound[par] is not None: # Retrieve the model parameter m = getattr(self, par) min_value = self.lower_bound[par] max_value = self.upper_bound[par] # Create a temporary copy for masking purposes m_temp = m.clone() # Use .clone() instead of .copy() to avoid issues with gradients # Clip the values of the parameter using in-place modification with .data m.data.clamp_(min_value, max_value) # Apply the water layer mask if it is not None, using in-place modification if self.water_layer_mask is not None: m.data = torch.where(self.water_layer_mask, m_temp.data, m.data) return
[docs] def forward(self) -> None: """Forward method of the elastic model class """ # set the constraints on the parameters if necessary if self.auto_update_rho: self.set_rho_using_empirical_function() if self.auto_update_vp: self.set_vp_using_empirical_function() # Clip the model parameters self.clip_params() # calculate the thomson/lame and elastic moduli parameters self._parameterization_Lame() self._parameterization_elastic_moduli() return
[docs]class AnisotropicElasticModel(AbstractModel): """This model defines an anisotropic elastic velocity model for VTI (Vertical Transverse Isotropy) or HTI (Horizontal Transverse Isotropy) using the primary parameters: (1) P-wave velocity (vp) (2) S-wave velocity (vs) (3) Density (rho) (4) Anisotropic parameters epsilon (eps), gamma, and delta Parameters ---------- ox : float Origin of the model in the x-direction (m) oz : float Origin of the model in the z-direction (m) nx : int Number of grid points in the x-direction nz : int Number of grid points in the z-direction dx : float Grid size in the x-direction (m) dz : float Grid size in the z-direction (m) vp : Optional[Union[np.array, Tensor]], optional P-wave velocity model with shape (nz, nx), default is None vs : Optional[Union[np.array, Tensor]], optional S-wave velocity model with shape (nz, nx), default is None rho : Optional[Union[np.array, Tensor]], optional Density model with shape (nz, nx), default is None eps : Optional[Union[np.array, Tensor]], optional Anisotropic parameter epsilon for VTI/HTI model, default is None gamma : Optional[Union[np.array, Tensor]], optional Anisotropic parameter gamma for VTI/HTI model, default is None delta : Optional[Union[np.array, Tensor]], optional Anisotropic parameter delta for VTI/HTI model, default is None vp_bound : Optional[Tuple[float, float]], optional Lower and upper bounds for the P-wave velocity model, default is None vs_bound : Optional[Tuple[float, float]], optional Lower and upper bounds for the S-wave velocity model, default is None rho_bound : Optional[Tuple[float, float]], optional Lower and upper bounds for the density model, default is None eps_bound : Optional[Tuple[float, float]], optional Lower and upper bounds for epsilon, default is None gamma_bound : Optional[Tuple[float, float]], optional Lower and upper bounds for gamma, default is None delta_bound : Optional[Tuple[float, float]], optional Lower and upper bounds for delta, default is None vp_grad : Optional[bool], optional Flag to compute the gradient of the P-wave velocity model, default is False vs_grad : Optional[bool], optional Flag to compute the gradient of the S-wave velocity model, default is False rho_grad : Optional[bool], optional Flag to compute the gradient of the density model, default is False eps_grad : Optional[bool], optional Flag to compute the gradient of epsilon, default is False gamma_grad : Optional[bool], optional Flag to compute the gradient of gamma, default is False delta_grad : Optional[bool], optional Flag to compute the gradient of delta, default is False free_surface : Optional[bool], optional Flag to include a free surface, default is False anisotropic_type : Optional[str], optional Type of anisotropic model ('vti', 'hti', etc.), default is 'vti' abc_type : Optional[str], optional Type of absorbing boundary condition, options include 'PML', 'Jerjan', etc., default is 'PML' abc_jerjan_alpha : Optional[float], optional Attenuation factor for Jerjan boundary condition, default is 0.0053 nabc : Optional[int], optional Number of absorbing boundary cells, default is 20 auto_update_rho : Optional[bool], optional Whether to automatically update the density model during inversion, default is False auto_update_vp : Optional[bool], optional Whether to automatically update the P-wave velocity model during inversion, default is False water_layer_mask : Optional[Union[np.array, Tensor]], optional Mask for the water layer (not updated), if applicable, default is None device : str, optional Device for running the model ('cpu' or 'cuda'), default is 'cpu' dtype : torch.dtype, optional Data type for PyTorch tensors, default is torch.float32 """ def __init__(self, ox:float,oz:float, nx:int,nz:int, dx:float,dz:float, vp:Optional[Union[np.array,Tensor]] = None, # model parameter vs:Optional[Union[np.array,Tensor]] = None, rho:Optional[Union[np.array,Tensor]] = None, eps:Optional[Union[np.array,Tensor]] = None, gamma:Optional[Union[np.array,Tensor]] = None, delta:Optional[Union[np.array,Tensor]] = None, vp_bound: Optional[Tuple[float, float]] = None, # model parameter's boundary vs_bound: Optional[Tuple[float, float]] = None, rho_bound: Optional[Tuple[float, float]] = None, eps_bound: Optional[Tuple[float, float]] = None, gamma_bound: Optional[Tuple[float, float]] = None, delta_bound: Optional[Tuple[float, float]] = None, vp_grad:Optional[bool] = False, # requires gradient or not vs_grad:Optional[bool] = False, rho_grad:Optional[bool] = False, eps_grad:Optional[bool] = False, gamma_grad:Optional[bool] = False, delta_grad:Optional[bool] = False, free_surface:Optional[bool] = False, anisotropic_type:Optional[str] = "vti", abc_type:Optional[str] = 'PML', abc_jerjan_alpha:Optional[float] = 0.0053, nabc:Optional[int] = 20, auto_update_rho:Optional[bool] = False, # auto update parameters auto_update_vp:Optional[bool] = False, water_layer_mask:Optional[Union[np.array,Tensor]]= None, device = 'cpu', dtype = torch.float32 )->None: # initialize the common model parameters super().__init__(ox,oz,nx,nz,dx,dz,free_surface,abc_type,abc_jerjan_alpha,nabc,device,dtype) # initialize the thomson model model parameters self.pars = ["vp","vs","rho","eps","gamma","delta"] self.vp = vp.copy() self.vs = vs.copy() self.rho = rho.copy() self.eps = eps.copy() self.gamma = gamma.copy() self.delta = delta.copy() self.vp_grad = vp_grad self.vs_grad = vs_grad self.rho_grad = rho_grad self.eps_grad = eps_grad self.gamma_grad = gamma_grad self.delta_grad = delta_grad self.anisotropic_type = anisotropic_type self._parameterization_thomson() # initialize the lame constant self.mu = None self.lamu = None self.lam = None self.muxz = None self.b = None self.bx = None self.bz = None self._parameterization_Lame() # initialize the elastic moduli self.CC = [] self._parameterization_elastic_moduli() # set model bounds self.lower_bound["vp"] = vp_bound[0] if vp_bound is not None else None self.lower_bound["vs"] = vs_bound[0] if vs_bound is not None else None self.lower_bound["rho"] = rho_bound[0] if rho_bound is not None else None self.lower_bound['eps'] = eps_bound[0] if eps_bound is not None else None self.lower_bound['gamma'] = gamma_bound[0] if gamma_bound is not None else None self.lower_bound['delta'] = delta_bound[0] if delta_bound is not None else None self.upper_bound["vp"] = vp_bound[1] if vp_bound is not None else None self.upper_bound["vs"] = vs_bound[1] if vs_bound is not None else None self.upper_bound["rho"] = rho_bound[1] if rho_bound is not None else None self.upper_bound["eps"] = eps_bound[1] if eps_bound is not None else None self.upper_bound["gamma"] = gamma_bound[1] if gamma_bound is not None else None self.upper_bound["delta"] = delta_bound[1] if delta_bound is not None else None # set model gradients self.requires_grad["vp"] = self.vp_grad self.requires_grad["vs"] = self.vs_grad self.requires_grad["rho"] = self.rho_grad self.requires_grad["eps"] = self.eps_grad self.requires_grad["gamma"] = self.gamma_grad self.requires_grad["delta"] = self.delta_grad # check the input model self._check_bounds() self.check_dims() # update rho using the empirical function self.auto_update_rho = auto_update_rho self.auto_update_vp = auto_update_vp if water_layer_mask is not None: self.water_layer_mask = numpy2tensor(water_layer_mask,dtype=torch.bool).to(device) else: self.water_layer_mask = None def _parameterization_thomson(self): # numpy2tensor self.vp = numpy2tensor(self.vp ,self.dtype).to(self.device) self.vs = numpy2tensor(self.vs ,self.dtype).to(self.device) self.rho = numpy2tensor(self.rho ,self.dtype).to(self.device) self.eps = numpy2tensor(self.eps ,self.dtype).to(self.device) self.gamma = numpy2tensor(self.gamma,self.dtype).to(self.device) self.delta = numpy2tensor(self.delta,self.dtype).to(self.device) # set model parameters self.vp = torch.nn.Parameter(self.vp ,requires_grad=self.vp_grad) self.vs = torch.nn.Parameter(self.vs ,requires_grad=self.vs_grad) self.rho = torch.nn.Parameter(self.rho ,requires_grad=self.rho_grad) self.eps = torch.nn.Parameter(self.eps ,requires_grad=self.eps_grad) self.gamma = torch.nn.Parameter(self.gamma ,requires_grad=self.gamma_grad) self.delta = torch.nn.Parameter(self.delta ,requires_grad=self.delta_grad) return def _parameterization_Lame(self): mu,lamu,lam,b = vs_vp_to_Lame(self.vp,self.vs,self.rho) self.mu = mu self.lamu = lamu self.lam = lam self.b = b return def _parameterization_elastic_moduli(self): # initialize elastic moduli CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] = elastic_moduli_init(self.nz,self.nx,self.device,self.dtype) # transform thomsen parameter to elastic moduli C11,C13,C33,C44,C66 = thomsen_to_elastic_moduli(self.vp,self.vs,self.rho,self.eps,self.delta,self.gamma) CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] # define elastic moduli for anisotropic model CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] = elastic_moduli_for_TI(CC,anisotropic_type=self.anisotropic_type) # prepare staggered grid settings bx,bz,muxz,C44,C55,C66 = parameter_staggered_grid(self.mu,self.b,C44,C55,C66,self.nx,self.nz) self.bx = bx self.bz = bz self.muxz = muxz CC = [C11,C12,C13,C14,C15,C16,C22,C23,C24,C25,C26,C33,C34,C35,C36,C44,C45,C46,C55,C56,C66] self.CC = CC return def _plot_vp_vs_rho(self,**kwargs): """plot velocity model """ plot_vp_vs_rho(self.vp,self.vs,self.rho, dx=self.dx,dz=self.dz,**kwargs) return def _plot_eps_delta_gamma(self,**kwargs): """plot anisotropic parameters """ plot_eps_delta_gamma(self.eps,self.delta,self.gamma, dx=self.dx,dz=self.dz,**kwargs) return def _plot_lam_mu(self,**kwargs): """plot lame parameters """ plot_lam_mu(self.lam,self.mu, dx=self.dx,dz=self.dz,**kwargs) return def _plot(self,var,**kwargs): """plot single velocity model """ model_data = self.get_model(var) plot_model(model_data,title=var,**kwargs) return
[docs] def set_rho_using_empirical_function(self): """approximate rho via empirical relations with vp """ vp = self.vp.cpu().detach().numpy() rho = np.power(vp, 0.25) * 310 rho = numpy2tensor(rho,self.dtype).to(self.device) self.rho = torch.nn.Parameter(rho ,requires_grad=self.rho_grad) return
[docs] def set_vp_using_empirical_function(self): """approximate vp via empirical relations with vs """ vs = self.vs.cpu().detach().numpy() vp = vs*np.sqrt(3) vp = numpy2tensor(vp,self.dtype).to(self.device) self.vp = torch.nn.Parameter(vp,requires_grad=self.vp_grad) return
[docs] def clip_params(self)->None: """Clip the model parameters to the given bounds """ for par in self.pars: if self.lower_bound[par] is not None and self.upper_bound[par] is not None: # Retrieve the model parameter m = getattr(self, par) min_value = self.lower_bound[par] max_value = self.upper_bound[par] # Create a temporary copy for masking purposes m_temp = m.clone() # Use .clone() instead of .copy() to avoid issues with gradients # Clip the values of the parameter using in-place modification with .data m.data.clamp_(min_value, max_value) # Apply the water layer mask if it is not None, using in-place modification if self.water_layer_mask is not None: m.data = torch.where(self.water_layer_mask, m_temp.data, m.data) return
[docs] def forward(self) -> None: """Forward method of the elastic model class """ # set the constraints on the parameters if necessary if self.auto_update_rho: self.set_rho_using_empirical_function() if self.auto_update_vp: self.set_vp_using_empirical_function() # Clip the model parameters self.clip_params() # calculate the thomson/lame and elastic moduli parameters self._parameterization_Lame() self._parameterization_elastic_moduli() return